
0 1000 2000 3000 4000 5000 6000

t

0

2000

4000

6000

8000

10000

R
eg

re
t

OFUL
CRTM
CRMM
HeavyOFUL
Hvt-UCB

(a) Pareto distribution
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(b) Lomax distribution
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(c) Fisk distribution

Figure 1: [Reviewer C6wo, ZqBj] Experiment of Different Noise Distribution. Configuration: Besides the Student’s t distribution, we consider
three classic heavy-tailed distributions: (a) Pareto distribution, (b) Lomax distribution, and (c) Fisk distribution. We implement all three distribu-
tions using Python’s scipy.stats. For the Pareto distribution, we set b = 1.5; for the Lomax and Fisk distributions, we set c = 1.5. We set ϵ = 1.49,
ensuring that the (1 + ϵ)-moment exists. In the experiments, we use a time-varying noise scale, consistent with the setup in Figure 2. Result: We
conducted 5 independent trials and averaged the results. The three figures show cumulative regret under different noise distributions. In both set-
tings, our algorithm performs similarly to Heavy-OFUL, demonstrating competitive performance. Note that the CRMM algorithm performs poorly
across all three distributions, as it can only handle symmetric noise, while these distributions are non-symmetric. In summary, this experiment
validates the effectiveness of our algorithm in handling various noise distributions.
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(a) scale of νt is 1.5
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(b) scale of νt is 2
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(c) scale of νt is 2.5

Figure 2: [Reviewer McYB, Reviewer ZqBj, Reviewer P7Rp] Experiment of Varying νt. Configuration: In this experiment, we consider a
Student’s t-distribution with a time-varying noise scale. Specifically, we fix the degrees of freedom as df = 1.7 and set ϵ = df − 0.01. At each
round, noise is first sampled from Student t(df) and then scaled by a factor α, where log10(α) ∼ Unif(0, scale), so that the central moments of
εt vary across rounds. In this setting, existing algorithms can only rely on an upper bound of the noise variance, whereas our proposed HvtLB
algorithm leverages the actual per-round variance for more accurate and adaptive scheduling. This setting follows the experimental setup proposed
by Huang et al. (2024). Results: We tested different scales of νt, with scales of 1.5, 2 and 2.5 in Figure 2(a), 2(b) and 2(c). In all environments,
HvtLB and HeavyOFUL, which have variance-aware capabilities, outperform other algorithms significantly. In contrast, OFUL performs the worst
because it lacks both variance-awareness and the ability to handle heavy-tailed noise.
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(a) fixed arm set
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(b) varying arm set 40/50
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(c) varying arm set 30/50

Figure 3: [Reviewer C6wo] Experiment of Varying Arm Set Case. Configuration: In this experiment, we create a total arm set X with 50 arms,
which are pre-sampled before the experiment begins. To make the arm set varying, in each round, we randomly select a subset from X as the
current arm set Xt, from which the algorithm can choose arms. In this case, the regret is based on the best arm in each round, rather than the global
optimal arm. We consider three scenarios: (i) the arm set Xt = X with 50 arms, (ii) randomly selecting 40 arms in each round, and (iii) randomly
selecting 30 arms in each round. Result: We conducted 5 independent trials and averaged the results. The three figures show cumulative regret
under different levels of arm set changes. In all settings, our algorithm performs the best, while HeavyOFUL and CRTM also achieve competitive
results. However, when the arm set varies, the MOM-based algorithm fails. This is because MOM-based algorithms assume a fixed arm set and
rely on resampling. When the arm set changes, resampling the same arms is not possible, so the algorithm selects the closest available arms instead.
In summary, this experiment validates the effectiveness of our algorithm in scenarios where the arm set is time-varying.
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(a) Time-varying ν case
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(b) Light-tailed case
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(c) Non-symmetric noise case
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(d) Average time cost

Figure 4: [Reviewer P7Rp] Questions of empirical performance and computational cost. In our paper, the performance of Hvt-UCB did not
appear particularly advantages compared to previous methods. This is because the experiments were conducted under a fixed νt setting, where,
theoretically, Hvt-UCB and previous methods share the same optimal regret guarantee. In our additional experiments, we introduce a variety of
new settings to demonstrate the advantages of Hvt-UCB over existing methods. Figure 4(a) presents results under a time-varying νt setting with
scale 2.5 (same as Figure 2(c)). We observe that both Hvt-UCB and HeavyOFUL outperform CRTM and CRMM. This is because Hvt-UCB and
HeavyOFUL are variance-aware and can adapt to changes in νt, while CRTM and CRMM cannot. Figure 4(b) shows results in a sub-Gaussian
scenario (origin Figure 2 in our paper). Here, CRTM performs poorly because its truncation mechanism is not well-suited for normally distributed
data, rendering it ineffective. Figure 4(c) reports results under a Pareto distribution setting (same as Figure 1(a)). In this case, CRMM performs
poorly due to its reliance on the median-of-means (MOM) estimator, which struggles with non-symmetric noise, leading to a drop in performance.
Figure 4(d) presents the average time cost, with the vertical axis in logarithmic scale. It is evident that HeavyOFUL is significantly slower (about
800 times more computationally expensive) while our Hvt-UCB remains on the same order of magnitude in time complexity as existing one-
pass algorithms (OFUL, CRTM, and CRMM). The efficiency of OFUL, CRTM, and CRMM comes from their use of closed-form least-squares
solutions. Although Hvt-UCB requires a projection step in each round, its runtime remains competitive and is on the same order of magnitude as
Least Squares-based algorithms. CRMM is faster than other one-pass methods, because it updates its estimates periodically rather than in every
round, reducing the per-round overhead. In summary, our algorithm consistently demonstrates superior performance across diverse scenarios,
while maintaining time complexity comparable to one-pass least-squares-based methods.
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(a) Origin Figure 1 in our Paper
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(b) Scaled Figure 1 in our Paper
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(c) Origin Figure 2 in our Paper
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(d) Scaled Figure 2 in our Paper

Figure 5: [Reviewer P7Rp] Questions of Linear Appearance of Regret Curve. Some curves are linear due to algorithm failure, such as OFUL
in Figure 5(a) and CRTM in Figure 5(c). Other curves appear flat because of the long time horizon of 18,000 rounds and compression of the y-axis.
Similar linear appearance can be observed in the experiments of previous work (Xue et al., 2023; Huang et al., 2024). In Figure 5(b) and Figure
5(d), we removed the non-converging algorithms and scaled up the y-axis, clearly showing that the regret of algorithms are sub-linear.

References
Huang, J., Zhong, H., Wang, L., and Yang, L. Tackling heavy-tailed rewards in reinforcement learning with function approximation:

Minimax optimal and instance-dependent regret bounds. In Advances in Neural Information Processing Systems 37 (NeurIPS),
pp. to appear, 2024.

Xue, B., Wang, Y., Wan, Y., Yi, J., and Zhang, L. Efficient algorithms for generalized linear bandits with heavy-tailed rewards. In
Advances in Neural Information Processing Systems 36 (NeurIPS), pp. to appear, 2023.


